不良品発生確率を計算する問題になります。
問題
3台の機械A,B,Cが良品を製造する確率は,それぞれ60%,70%,80%である。機械A,B,Cが製品を一つずつ製造したとき,いずれか二つの製品が良品で残り一つが不良品になる確率は何%か。
- ア 22.4
- イ 36.8
- ウ 45.2
- エ 78.8
解き方
まず二つの製品が良品、1つが不良品の確率になるパターンを考えてみます。
A不 B良 C良
A良 B不 C良
A良 B良 C不
それぞれを計算してみます。機会ABCの3つの確率が全て成立する必要があるのでそれぞれの確率を掛け算します。
(1-0.6)×0.7×0.8=0.224 | A不 B良 C良
0.6×(1-0.7)×0.8=0.144 | A良 B不 C良
0.6×0.7×(1-0.8)=0.084 | A良 B良 C不
これで全てのパターンの確率が出せました。そしてこのパターンは今回の問題では同時に起こらない事(排反事象)になっています。したがってこの3パターンの確率を足し算します。
0.224 + 0.144 + 0.084 = 0.452 = 45.2%
となりウが正解となります。
コメントを残す